Summary: | Using 10-day forecast 500 mb height data from the last 7 yr, the potential to predict the skill of numerical weather forecasts is discussed. Four possible predictor sets are described. The skill of the predictors are tested, and the regression coefficients derived, on data from six winters, for both regional and hemispheric skill scores. As an independent test, the predictors are also applied separately to the seventh winter period 1986/87. It is concluded that some aspects of the low-frequency component of forecast skill variability can be satisfactorily predicted, though significant high frequency variability remains unpredicted. In discussing the physical mechanisms that underlie the use of these predictors, three important components of forecast skill variability are discussed: the quality of the initial analysis, the intrinsic instability of the flow, and the role of model systematic errors. -from Authors
|