Impacts of raw data temporal resolution using selected clustering methods on residential electricity load profiles
There is growing interest in discerning behaviors of electricity users in both the residential and commercial sectors. With the advent of high-resolution time-series power demand data through advanced metering, mining this data could be costly from the computational viewpoint. One of the popular tec...
Asıl Yazarlar: | Granell, R, Axon, C, Wallom, D |
---|---|
Materyal Türü: | Journal article |
Baskı/Yayın Bilgisi: |
IEEE
2015
|
Benzer Materyaller
-
Impacts of raw data temporal resolution using selected clustering methods on residential electricity load profiles
Yazar:: Granell, R, ve diğerleri
Baskı/Yayın Bilgisi: (2014) -
Clustering disaggregated load profiles using a Dirichlet process mixture model
Yazar:: Granell, R, ve diğerleri
Baskı/Yayın Bilgisi: (2015) -
A data-driven approach for electricity load profile prediction of new supermarkets
Yazar:: Granell, R, ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
Using existing building stock to predict the electricity load profiles of new supermarkets
Yazar:: Granell, R, ve diğerleri
Baskı/Yayın Bilgisi: (2018) -
Predicting electricity demand profiles of new supermarkets using machine learning
Yazar:: Granell, R, ve diğerleri
Baskı/Yayın Bilgisi: (2020)