Phase-retardation effects at radio frequencies in flat-plate conductors
A system of new integral equations is presented. They are derived from Maxwell's equations and describe radio-frequency (RF) current densities on a two-dimensional flat plate. The equations are generalisations of Pocklington's integral equation showing phase-retardation in two dimensions....
Main Authors: | , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2004
|
Summary: | A system of new integral equations is presented. They are derived from Maxwell's equations and describe radio-frequency (RF) current densities on a two-dimensional flat plate. The equations are generalisations of Pocklington's integral equation showing phase-retardation in two dimensions. These singular equations are solved, numerically, for the case of one-dimensional geometry. The solutions are shown to display effects which correspond to damped resonance when the wavelength of the current matches aspects of the geometry of the conductor. © Australian Mathematical Society 2004. |
---|