Quantum-mechanical calculations on pressure and temperature dependence of three-body recombination reactions: application to ozone formation rates.
A quantum-mechanical model is designed for the calculation of termolecular association reaction rate coefficients in the low-pressure fall-off regime. The dynamics is set up within the energy transfer mechanism and the kinetic scheme is the steady-state approximation. We applied this model to the fo...
Main Authors: | , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2004
|
Summary: | A quantum-mechanical model is designed for the calculation of termolecular association reaction rate coefficients in the low-pressure fall-off regime. The dynamics is set up within the energy transfer mechanism and the kinetic scheme is the steady-state approximation. We applied this model to the formation of ozone O + O2 + M --> O3 + M for M = Ar, making use of semiquantitative potential energy surfaces. The stabilization process is treated by means of the vibrational close-coupling infinite order sudden scattering theory. Major approximations include the neglect of the O3 vibrational bending mode and rovibrational couplings. We calculated individual isotope-specific rate constants and rate constant ratios over the temperature range 10-1000 K and the pressure fall-off region 10(-7)-10(2) bar. The present results show a qualitative and semiquantitative agreement with available experiments, particularly in the temperature region of atmospheric interest. |
---|