Importance of interband transitions for the fractional quantum Hall effect in bilayer graphene

Several recent works have proposed that electron-electron interactions in bilayer graphene can be tuned with the help of external parameters, making it possible to stabilize different fractional quantum Hall states. In these prior works, phase diagrams were calculated based on a single Landau level...

Full description

Bibliographic Details
Main Authors: Snizhko, K, Cheianov, V, Simon, S
Format: Journal article
Language:English
Published: 2012
Description
Summary:Several recent works have proposed that electron-electron interactions in bilayer graphene can be tuned with the help of external parameters, making it possible to stabilize different fractional quantum Hall states. In these prior works, phase diagrams were calculated based on a single Landau level approximation. We go beyond this approximation and investigate the influence of polarization effects and virtual interband transitions on the stability of fractional quantum Hall states in bilayer graphene. We find that for realistic values of the dielectric constant, the phase diagram is strongly modified by these effects. We illustrate this by evaluating the region of stability of the Pfaffian state. © 2012 American Physical Society.