Local Consistency and SAT-Solvers
In this paper we show that the power of using k-consistency techniques in a constraint problem is precisely captured by using a particular inference rule, which we call positive-hyper-resolution, on the direct Boolean encoding of the CSP instance. We also show that current clause-learning SAT-solver...
Main Authors: | , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2010
|
Summary: | In this paper we show that the power of using k-consistency techniques in a constraint problem is precisely captured by using a particular inference rule, which we call positive-hyper-resolution, on the direct Boolean encoding of the CSP instance. We also show that current clause-learning SAT-solvers will deduce any positive-hyper-resolvent of a fixed size from a given set of clauses in polynomial expected time. We combine these two results to show that, without being explicitly designed to do so, current clause-learning SAT-solvers efficiently simulate k-consistency techniques, for all values of k. We then give some experimental results to show that this feature allows clause-learning SAT-solvers to efficiently solve certain families of CSP instances which are challenging for conventional CP solvers. © 2010 Springer-Verlag. |
---|