Seismic savanna: machine learning for classifying wildlife and behaviours using ground-based vibration field recordings
We develop a machine learning approach to detect and discriminate elephants from other species, and to recognise important behaviours such as running and rumbling, based only on seismic data generated by the animals. We demonstrate our approach using data acquired in the Kenyan savanna, consisting o...
المؤلفون الرئيسيون: | Szenicer, A, Reinwald, M, Moseley, B, Nissen-Meyer, T, Muteti, Z, Oduor, S, McDermott-Roberts, A, Baydin, A, Mortimer, E |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
Wiley
2021
|
مواد مشابهة
-
Seismic localisation of elephant rumbles as a monitoring approach
حسب: Reinwald, M, وآخرون
منشور في: (2021) -
Classifying elephant behaviour through seismic vibrations
حسب: Mortimer, B, وآخرون
منشور في: (2018) -
Social-ecological dynamics at the livestock-wildlife interface in an African savanna
حسب: Tyrrell, P
منشور في: (2021) -
A complexity-driven framework for waveform tomography with discrete adjoints
حسب: Szenicer, A, وآخرون
منشور في: (2020) -
Gaussian processes for probabilistic estimates of earthquake ground shaking: a 1-D proof-of-concept
حسب: Scivier, SA, وآخرون
منشور في: (2024)