Generation of 12-lead patient-specific electrocardiogram and risk prediction of cardiovascular disease using deep learning
<p>This thesis presents a novel deep learning framework based on Variational Autoencoders (VAEs) for the generation and analysis of 12-lead electrocardiograms (ECGs), and its use for cardiovascular disease (CVD) risk prediction. It focuses on three major aspects:</p> <p>First, we...
Главный автор: | Sang, Y |
---|---|
Другие авторы: | Grau Colomer, V |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
2023
|
Предметы: |
Схожие документы
-
Editorial: Deep learning for disease prediction in next-generation sequencing and biomedical imaging data
по: Saurav Mallik, и др.
Опубликовано: (2023-08-01) -
Uncertainty-Aware Deep Learning-Based Cardiac Arrhythmias Classification Model of Electrocardiogram Signals
по: Ahmad O. Aseeri
Опубликовано: (2021-06-01) -
Brief Review on Electrocardiogram Analysis and Classification Techniques with Machine Learning Approaches
по: Pedro Henrique Borghi de Melo
Опубликовано: (2021-11-01) -
Comparative Analysis on Machine Learning and Deep Learning to Predict Post-Induction Hypotension
по: Jihyun Lee, и др.
Опубликовано: (2020-08-01) -
Effectiveness of Transfer Learning for Deep Learning-Based Electrocardiogram Analysis
по: Jong-Hwan Jang, и др.
Опубликовано: (2021-01-01)