The complexity of approximately counting in 2-spin systems on k-uniform bounded-degree hypergraphs
One of the most important recent developments in the complexity of approximate counting is the classification of the complexity of approximating the partition functions of antiferromagnetic 2-spin systems on bounded-degree graphs. This classification is based on a beautiful connection to the so-call...
Những tác giả chính: | Goldberg, L, Galanis, A |
---|---|
Định dạng: | Journal article |
Được phát hành: |
Elsevier
2016
|
Những quyển sách tương tự
-
The complexity of approximately counting in 2-spin systems on k-uniform bounded-degree hypergraphs
Bằng: Goldberg, L, et al.
Được phát hành: (2016) -
The complexity of approximately counting in 2-spin systems on k-uniform bounded-degree hypergraphs
Bằng: Galanis, A, et al.
Được phát hành: (2015) -
Approximating partition functions of bounded- degree Boolean counting Constraint Satisfaction Problems
Bằng: Galanis, A, et al.
Được phát hành: (2017) -
Approximating partition functions of bounded-degree Boolean counting Constraint Satisfaction Problems
Bằng: Galanis, A, et al.
Được phát hành: (2020) -
The complexity of approximating the complex-valued Ising model on bounded degree graphs
Bằng: Galanis, A, et al.
Được phát hành: (2022)