Joint object-material category segmentation from audio-visual cues

It is not always possible to recognise objects and infer material properties for a scene from visual cues alone, since objects can look visually similar whilst being made of very different materials. In this paper, we therefore present an approach that augments the available dense visual cues with s...

Full description

Bibliographic Details
Main Authors: Arnab, A, Sapienza, M, Golodetz, S, Valentin, J, Miksik, O, Izadi, S, Torr, P
Format: Conference item
Published: BMVA Press 2015
Description
Summary:It is not always possible to recognise objects and infer material properties for a scene from visual cues alone, since objects can look visually similar whilst being made of very different materials. In this paper, we therefore present an approach that augments the available dense visual cues with sparse auditory cues in order to estimate dense object and material labels. Since estimates of object class and material properties are mutually-informative, we optimise our multi-output labelling jointly using a random-field framework. We evaluate our system on a new dataset with paired visual and auditory data that we make publicly available. We demonstrate that this joint estimation of object and material labels significantly outperforms the estimation of either category in isolation.