Loss-of-function mutations in SLC30A8 protect against type 2 diabetes

Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ∼150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating varia...

Cur síos iomlán

Sonraí bibleagrafaíochta
Príomhchruthaitheoirí: Flannick, J, Thorleifsson, G, Beer, N, Jacobs, S, Grarup, N, Burtt, N, Mahajan, A, Fuchsberger, C, Atzmon, G, Benediktsson, R, Blangero, J, Bowden, D, Brandslund, I, Brosnan, J, Burslem, F, Chambers, J, Cho, Y, Christensen, C, Douglas, D, Duggirala, R, Dymek, Z, Farjoun, Y, Fennell, T, Fontanillas, P, Forsén, T
Formáid: Journal article
Teanga:English
Foilsithe / Cruthaithe: Nature Publishing Group 2014
_version_ 1826259911137296384
author Flannick, J
Thorleifsson, G
Beer, N
Jacobs, S
Grarup, N
Burtt, N
Mahajan, A
Fuchsberger, C
Atzmon, G
Benediktsson, R
Blangero, J
Bowden, D
Brandslund, I
Brosnan, J
Burslem, F
Chambers, J
Cho, Y
Christensen, C
Douglas, D
Duggirala, R
Dymek, Z
Farjoun, Y
Fennell, T
Fontanillas, P
Forsén, T
author_facet Flannick, J
Thorleifsson, G
Beer, N
Jacobs, S
Grarup, N
Burtt, N
Mahajan, A
Fuchsberger, C
Atzmon, G
Benediktsson, R
Blangero, J
Bowden, D
Brandslund, I
Brosnan, J
Burslem, F
Chambers, J
Cho, Y
Christensen, C
Douglas, D
Duggirala, R
Dymek, Z
Farjoun, Y
Fennell, T
Fontanillas, P
Forsén, T
author_sort Flannick, J
collection OXFORD
description Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ∼150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10 -6), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (-0.17 s.d., P = 4.6 × 10 -4). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention. © 2014 Nature America, Inc.
first_indexed 2024-03-06T18:57:18Z
format Journal article
id oxford-uuid:1246416e-726f-4534-a833-da0ce8865f5c
institution University of Oxford
language English
last_indexed 2024-03-06T18:57:18Z
publishDate 2014
publisher Nature Publishing Group
record_format dspace
spelling oxford-uuid:1246416e-726f-4534-a833-da0ce8865f5c2022-03-26T10:07:04ZLoss-of-function mutations in SLC30A8 protect against type 2 diabetesJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:1246416e-726f-4534-a833-da0ce8865f5cEnglishSymplectic Elements at OxfordNature Publishing Group2014Flannick, JThorleifsson, GBeer, NJacobs, SGrarup, NBurtt, NMahajan, AFuchsberger, CAtzmon, GBenediktsson, RBlangero, JBowden, DBrandslund, IBrosnan, JBurslem, FChambers, JCho, YChristensen, CDouglas, DDuggirala, RDymek, ZFarjoun, YFennell, TFontanillas, PForsén, TLoss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ∼150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10 -6), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (-0.17 s.d., P = 4.6 × 10 -4). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention. © 2014 Nature America, Inc.
spellingShingle Flannick, J
Thorleifsson, G
Beer, N
Jacobs, S
Grarup, N
Burtt, N
Mahajan, A
Fuchsberger, C
Atzmon, G
Benediktsson, R
Blangero, J
Bowden, D
Brandslund, I
Brosnan, J
Burslem, F
Chambers, J
Cho, Y
Christensen, C
Douglas, D
Duggirala, R
Dymek, Z
Farjoun, Y
Fennell, T
Fontanillas, P
Forsén, T
Loss-of-function mutations in SLC30A8 protect against type 2 diabetes
title Loss-of-function mutations in SLC30A8 protect against type 2 diabetes
title_full Loss-of-function mutations in SLC30A8 protect against type 2 diabetes
title_fullStr Loss-of-function mutations in SLC30A8 protect against type 2 diabetes
title_full_unstemmed Loss-of-function mutations in SLC30A8 protect against type 2 diabetes
title_short Loss-of-function mutations in SLC30A8 protect against type 2 diabetes
title_sort loss of function mutations in slc30a8 protect against type 2 diabetes
work_keys_str_mv AT flannickj lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT thorleifssong lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT beern lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT jacobss lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT grarupn lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT burttn lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT mahajana lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT fuchsbergerc lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT atzmong lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT benediktssonr lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT blangeroj lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT bowdend lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT brandslundi lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT brosnanj lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT burslemf lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT chambersj lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT choy lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT christensenc lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT douglasd lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT duggiralar lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT dymekz lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT farjouny lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT fennellt lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT fontanillasp lossoffunctionmutationsinslc30a8protectagainsttype2diabetes
AT forsent lossoffunctionmutationsinslc30a8protectagainsttype2diabetes