Summary: | Neutron reflectivity and surface tension have been used to characterize the adsorption of the polyelectrolyte/ionic surfactant mixture of poly(ethyleneimine) (PEI) and sodium dodecyl sulfate (SDS) at the air-water interface. The surface tension behavior and adsorption patterns show a strong dependence upon the solution pH. However, the SDS adsorption at the interface is unexpectedly most pronounced when the pH is high (when the polymer is essentially a neutral polymer) and when the polymer architecture is branched rather than linear. For both the branched and the linear PEI polymer/surfactant complex formation results in a significant enhancement of the amount of SDS at the interface, down to surfactant concentrations approximately 10(-6) M. For the branched PEI a transition from a monolayer to a multilayer adsorption is observed, which depends on surfactant concentration and pH. In contrast, for the linear polymer, only monolayer adsorption is observed. This substantial increase in the surface activity of SDS by complexation with PEI results in spontaneous emulsification of hexadecane in water and the efficient wetting of hydrophobic substrates such as Teflon. In regions close to charge neutralization the multilayer adsorption is accentuated, and more extensively ordered structures, giving rise to Bragg peaks in the reflectivity data, are evident.
|