Machine learning methods for the analysis of MEG data
<p>Neuroimaging data is often high-dimensional and difficult to interpret. Methods have been developed which can be applied to datasets to make them more malleable and comprehensible to researchers. This process is critical for improving our understanding of the nature of the brain. The develo...
Auteur principal: | Roberts, EJ |
---|---|
Autres auteurs: | Woolrich, M |
Format: | Thèse |
Langue: | English |
Publié: |
2024
|
Documents similaires
-
Reducing MEG interference using machine learning
par: Sammi Hamdan, et autres
Publié: (2023-06-01) -
MEG or No MEG, That is the Question
par: Chaturbhuj Rathore
Publié: (2024-10-01) -
MEG: An introduction to methods
par: Hansen, P, et autres
Publié: (2010) -
Bayesian analysis of phase data in EEG and MEG
par: Sydney Dimmock, et autres
Publié: (2023-09-01) -
MEG and EEG data analysis with MNE-Python
par: Alexandre eGramfort, et autres
Publié: (2013-12-01)