Machine learning methods for the analysis of MEG data
<p>Neuroimaging data is often high-dimensional and difficult to interpret. Methods have been developed which can be applied to datasets to make them more malleable and comprehensible to researchers. This process is critical for improving our understanding of the nature of the brain. The develo...
1. autor: | Roberts, EJ |
---|---|
Kolejni autorzy: | Woolrich, M |
Format: | Praca dyplomowa |
Język: | English |
Wydane: |
2024
|
Podobne zapisy
-
Reducing MEG interference using machine learning
od: Sammi Hamdan, i wsp.
Wydane: (2023-06-01) -
MEG or No MEG, That is the Question
od: Chaturbhuj Rathore
Wydane: (2024-10-01) -
MEG: An introduction to methods
od: Hansen, P, i wsp.
Wydane: (2010) -
Bayesian analysis of phase data in EEG and MEG
od: Sydney Dimmock, i wsp.
Wydane: (2023-09-01) -
MEG and EEG data analysis with MNE-Python
od: Alexandre eGramfort, i wsp.
Wydane: (2013-12-01)