Machine learning approaches to identifying changes in eruptive state using multi-parameter datasets from the 2006 eruption of Augustine Volcano, Alaska
Understanding the timing of critical changes in volcanic systems, such as the beginning and end of eruptive behaviour, is a key goal of volcanic monitoring. Traditional approaches to forecasting these changes have used models motivated by the underlying physics of eruption onset, which assume that g...
المؤلفون الرئيسيون: | Manley, G, Mather, T, Pyle, D, Clifton, D |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
American Geophysical Union
2021
|
مواد مشابهة
-
Co-eruptive subsidence at Galeras identified during an InSAR survey of Colombian volcanoes (2006-2009)
حسب: Parks, M, وآخرون
منشور في: (2011) -
Co-eruptive subsidence at Galeras identified during an InSAR survey of Colombian volcanoes (2006-2009)
حسب: Parks, M, وآخرون
منشور في: (2011) -
Merapi Volcano Eruptions 2006
حسب: Subandriyo, ., وآخرون
منشور في: (2007) -
Evidence of mid- to late-Holocene explosive rhyolitic eruptions from Chaiten Volcano, Chile
حسب: Watt, S, وآخرون
منشور في: (2013) -
Multidisciplinary Constraints on Magma Compressibility, the Pre‐Eruptive Exsolved Volatile Fraction, and the H2O/CO2 Molar Ratio for the 2006 Augustine Eruption, Alaska
حسب: Valerie K. Wasser, وآخرون
منشور في: (2021-09-01)