Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images
White matter hyperintensities (WMHs) have been associated with various cerebrovascular and neurodegenerative diseases. Reliable quantification of WMHs is essential for understanding their clinical impact in normal and pathological populations. Automated segmentation of WMHs is highly challenging due...
Auteurs principaux: | Sundaresan, V, Zamboni, G, Rothwell, PM, Jenkinson, M, Griffanti, L |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Elsevier
2021
|
Documents similaires
-
Brain tumour segmentation using a triplanar ensemble of U-Nets on MR images
par: Sundaresan, V, et autres
Publié: (2021) -
Comparison of domain adaptation techniques for white matter hyperintensity segmentation in brain MR images
par: Sundaresan, V, et autres
Publié: (2021) -
Omni-supervised domain adversarial training for white matter hyperintensity segmentation in the UK Biobank
par: Sundaresan, V, et autres
Publié: (2022) -
Modelling the distribution of white matter hyperintensities due to ageing on MRI images using Bayesian inference
par: Sundaresan, V, et autres
Publié: (2018) -
BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities
par: Griffanti, L, et autres
Publié: (2016)