Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images
White matter hyperintensities (WMHs) have been associated with various cerebrovascular and neurodegenerative diseases. Reliable quantification of WMHs is essential for understanding their clinical impact in normal and pathological populations. Automated segmentation of WMHs is highly challenging due...
Автори: | Sundaresan, V, Zamboni, G, Rothwell, PM, Jenkinson, M, Griffanti, L |
---|---|
Формат: | Journal article |
Мова: | English |
Опубліковано: |
Elsevier
2021
|
Схожі ресурси
Схожі ресурси
-
Brain tumour segmentation using a triplanar ensemble of U-Nets on MR images
за авторством: Sundaresan, V, та інші
Опубліковано: (2021) -
Comparison of domain adaptation techniques for white matter hyperintensity segmentation in brain MR images
за авторством: Sundaresan, V, та інші
Опубліковано: (2021) -
Omni-supervised domain adversarial training for white matter hyperintensity segmentation in the UK Biobank
за авторством: Sundaresan, V, та інші
Опубліковано: (2022) -
Modelling the distribution of white matter hyperintensities due to ageing on MRI images using Bayesian inference
за авторством: Sundaresan, V, та інші
Опубліковано: (2018) -
BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities
за авторством: Griffanti, L, та інші
Опубліковано: (2016)