Simulations of the BM2 proton channel transmembrane domain from influenza virus B.

BM2 is a small integral membrane protein from influenza B virus which forms proton-permeable channels. Coarse-grained (CG) molecular dynamics simulations have been used to produce a model of the BM2 channel by self-assembly of a tetrameric bundle of BM2 transmembrane helices in a lipid bilayer. The...

Full description

Bibliographic Details
Main Authors: Rouse, S, Carpenter, T, Stansfeld, P, Sansom, MS
Format: Journal article
Language:English
Published: 2009
Description
Summary:BM2 is a small integral membrane protein from influenza B virus which forms proton-permeable channels. Coarse-grained (CG) molecular dynamics simulations have been used to produce a model of the BM2 channel by self-assembly of a tetrameric bundle of BM2 transmembrane helices in a lipid bilayer. The BM2 channel model is conformationally stable on a 5 mus time scale. This CG model was converted to atomistic resolution to refine interhelix and channel-water interactions. Atomistic molecular dynamics simulations indicate that the BM2 channel is closed when no more than two of the four His19 residues are protonated. Protonating a third His19 side chain initiates a conformational change that opens the channel. In summary, our simulations suggest a common mechanism for BM2 and A/M2, whereby changes in helix packing play a functional role in channel gating.