Simulations of the BM2 proton channel transmembrane domain from influenza virus B.
BM2 is a small integral membrane protein from influenza B virus which forms proton-permeable channels. Coarse-grained (CG) molecular dynamics simulations have been used to produce a model of the BM2 channel by self-assembly of a tetrameric bundle of BM2 transmembrane helices in a lipid bilayer. The...
Main Authors: | , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2009
|
Summary: | BM2 is a small integral membrane protein from influenza B virus which forms proton-permeable channels. Coarse-grained (CG) molecular dynamics simulations have been used to produce a model of the BM2 channel by self-assembly of a tetrameric bundle of BM2 transmembrane helices in a lipid bilayer. The BM2 channel model is conformationally stable on a 5 mus time scale. This CG model was converted to atomistic resolution to refine interhelix and channel-water interactions. Atomistic molecular dynamics simulations indicate that the BM2 channel is closed when no more than two of the four His19 residues are protonated. Protonating a third His19 side chain initiates a conformational change that opens the channel. In summary, our simulations suggest a common mechanism for BM2 and A/M2, whereby changes in helix packing play a functional role in channel gating. |
---|