The difference λ-calculus: a language for difference categories

Cartesian difference categories are a recent generalisation of Cartesian differential categories which introduce a notion of "infinitesimal" arrows satisfying an analogue of the Kock-Lawvere axiom, with the axioms of a Cartesian differential category being satisfied only "up to an inf...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsmän: Alvarez-Picallo, M, Ong, CL
Materialtyp: Conference item
Språk:English
Publicerad: Schloss Dagstuhl - Leibniz-Zentrum für Informatik 2020
_version_ 1826260087467933696
author Alvarez-Picallo, M
Ong, CL
author_facet Alvarez-Picallo, M
Ong, CL
author_sort Alvarez-Picallo, M
collection OXFORD
description Cartesian difference categories are a recent generalisation of Cartesian differential categories which introduce a notion of "infinitesimal" arrows satisfying an analogue of the Kock-Lawvere axiom, with the axioms of a Cartesian differential category being satisfied only "up to an infinitesimal perturbation". In this work, we construct a simply-typed calculus in the spirit of the differential λ-calculus equipped with syntactic "infinitesimals" and show how its models correspond to difference λ-categories, a family of Cartesian difference categories equipped with suitably well-behaved exponentials.
first_indexed 2024-03-06T19:00:03Z
format Conference item
id oxford-uuid:1336b551-8a05-4a6a-966c-23e9b8f890f9
institution University of Oxford
language English
last_indexed 2024-03-06T19:00:03Z
publishDate 2020
publisher Schloss Dagstuhl - Leibniz-Zentrum für Informatik
record_format dspace
spelling oxford-uuid:1336b551-8a05-4a6a-966c-23e9b8f890f92022-03-26T10:12:39ZThe difference λ-calculus: a language for difference categoriesConference itemhttp://purl.org/coar/resource_type/c_5794uuid:1336b551-8a05-4a6a-966c-23e9b8f890f9EnglishSymplectic ElementsSchloss Dagstuhl - Leibniz-Zentrum für Informatik2020Alvarez-Picallo, MOng, CLCartesian difference categories are a recent generalisation of Cartesian differential categories which introduce a notion of "infinitesimal" arrows satisfying an analogue of the Kock-Lawvere axiom, with the axioms of a Cartesian differential category being satisfied only "up to an infinitesimal perturbation". In this work, we construct a simply-typed calculus in the spirit of the differential λ-calculus equipped with syntactic "infinitesimals" and show how its models correspond to difference λ-categories, a family of Cartesian difference categories equipped with suitably well-behaved exponentials.
spellingShingle Alvarez-Picallo, M
Ong, CL
The difference λ-calculus: a language for difference categories
title The difference λ-calculus: a language for difference categories
title_full The difference λ-calculus: a language for difference categories
title_fullStr The difference λ-calculus: a language for difference categories
title_full_unstemmed The difference λ-calculus: a language for difference categories
title_short The difference λ-calculus: a language for difference categories
title_sort difference λ calculus a language for difference categories
work_keys_str_mv AT alvarezpicallom thedifferencelcalculusalanguagefordifferencecategories
AT ongcl thedifferencelcalculusalanguagefordifferencecategories
AT alvarezpicallom differencelcalculusalanguagefordifferencecategories
AT ongcl differencelcalculusalanguagefordifferencecategories