Non-stationarity and dissipative time crystals: Spectral properties and finite-size effects

We discuss the emergence of non-stationarity in open quantum many-body systems. This leads us to the definition of dissipative time crystals which display experimentally observable, persistent, time-periodic oscillations induced by noisy contact with an environment. We use the Loschmidt echo and loc...

Full description

Bibliographic Details
Main Authors: Booker, C, Buca, B, Jaksch, D
Format: Journal article
Published: IOP Publishing 2020
Description
Summary:We discuss the emergence of non-stationarity in open quantum many-body systems. This leads us to the definition of dissipative time crystals which display experimentally observable, persistent, time-periodic oscillations induced by noisy contact with an environment. We use the Loschmidt echo and local observables to indicate the presence of a finite sized dissipative time crystal. Starting from the closed Hubbard model we then provide examples of dissipation mechanisms that yield experimentally observable quantum periodic dynamics and allow analysis of the emergence of finite sized dissipative time crystals. For a disordered Hubbard model including two-particle loss and gain we find a dark Hamiltonian driving oscillations between GHZ states in the long-time limit. Finally, we discuss how the presented examples could be experimentally realized.