A simple branching process approach to the phase transition in $G_{n,p}$
It is well known that the branching process approach to the study of the random graph $G_{n,p}$ gives a very simple way of understanding the size of the giant component when it is fairly large (of order $\Theta(n)$). Here we show that a variant of this approach works all the way down to the phase tr...
Auteurs principaux: | Bollobas, B, Riordan, O |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
2012
|
Documents similaires
-
The cut metric, random graphs, and branching processes
par: Bollobas, B, et autres
Publié: (2009) -
The phase transition in inhomogeneous random graphs
par: Bollobas, B, et autres
Publié: (2005) -
The phase transition in the uniformly grown random graph has infinite order
par: Bollobas, B, et autres
Publié: (2005) -
An old approach to the giant component problem
par: Bollobas, B, et autres
Publié: (2012) -
Achlioptas process phase transitions are continuous
par: Riordan, O, et autres
Publié: (2011)