Models where the least trimmed squares and least median of squares estimators are maximum likelihood
The Least Trimmed Squares (LTS) and Least Median of Squares (LMS) estimators are popular robust regression estimators. The idea behind the estimators is to find, for a given h, a sub-sample of h good observations among n observations and estimate the regression on that sub-sample. We find models, ba...
Autors principals: | Berenguer-Rico, V, Johansen, S, Nielsen, B |
---|---|
Format: | Journal article |
Idioma: | English |
Publicat: |
2019
|
Ítems similars
-
A model where the least trimmed squares estimator is maximum likelihood
per: Berenguer-Rico, V, et al.
Publicat: (2023) -
Least trimmed squares: nuisance parameter free asymptotics
per: Berenguer Rico, V, et al.
Publicat: (2025) -
Symmetrically trimmed least squares estimation for Tobit models
per: Powell, James
Publicat: (2011) -
Large Sample Behavior of the Least Trimmed Squares Estimator
per: Yijun Zuo
Publicat: (2024-11-01) -
Nonlinear Split-Plot Design Model in Parameters Estimation using Estimated Generalized Least Square - Maximum Likelihood Estimation
per: Ikwuoche John David, et al.
Publicat: (2018-12-01)