Models where the least trimmed squares and least median of squares estimators are maximum likelihood
The Least Trimmed Squares (LTS) and Least Median of Squares (LMS) estimators are popular robust regression estimators. The idea behind the estimators is to find, for a given h, a sub-sample of h good observations among n observations and estimate the regression on that sub-sample. We find models, ba...
Päätekijät: | Berenguer-Rico, V, Johansen, S, Nielsen, B |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
2019
|
Samankaltaisia teoksia
-
A model where the least trimmed squares estimator is maximum likelihood
Tekijä: Berenguer-Rico, V, et al.
Julkaistu: (2023) -
Least trimmed squares: nuisance parameter free asymptotics
Tekijä: Berenguer Rico, V, et al.
Julkaistu: (2025) -
Symmetrically trimmed least squares estimation for Tobit models
Tekijä: Powell, James
Julkaistu: (2011) -
Large Sample Behavior of the Least Trimmed Squares Estimator
Tekijä: Yijun Zuo
Julkaistu: (2024-11-01) -
Nonlinear Split-Plot Design Model in Parameters Estimation using Estimated Generalized Least Square - Maximum Likelihood Estimation
Tekijä: Ikwuoche John David, et al.
Julkaistu: (2018-12-01)