Models where the least trimmed squares and least median of squares estimators are maximum likelihood
The Least Trimmed Squares (LTS) and Least Median of Squares (LMS) estimators are popular robust regression estimators. The idea behind the estimators is to find, for a given h, a sub-sample of h good observations among n observations and estimate the regression on that sub-sample. We find models, ba...
Main Authors: | Berenguer-Rico, V, Johansen, S, Nielsen, B |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado: |
2019
|
Títulos similares
-
A model where the least trimmed squares estimator is maximum likelihood
por: Berenguer-Rico, V, et al.
Publicado: (2023) -
Least trimmed squares: nuisance parameter free asymptotics
por: Berenguer Rico, V, et al.
Publicado: (2025) -
Symmetrically trimmed least squares estimation for Tobit models
por: Powell, James
Publicado: (2011) -
Large Sample Behavior of the Least Trimmed Squares Estimator
por: Yijun Zuo
Publicado: (2024-11-01) -
Nonlinear Split-Plot Design Model in Parameters Estimation using Estimated Generalized Least Square - Maximum Likelihood Estimation
por: Ikwuoche John David, et al.
Publicado: (2018-12-01)