Models where the least trimmed squares and least median of squares estimators are maximum likelihood
The Least Trimmed Squares (LTS) and Least Median of Squares (LMS) estimators are popular robust regression estimators. The idea behind the estimators is to find, for a given h, a sub-sample of h good observations among n observations and estimate the regression on that sub-sample. We find models, ba...
Main Authors: | Berenguer-Rico, V, Johansen, S, Nielsen, B |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
2019
|
Registos relacionados
-
A model where the least trimmed squares estimator is maximum likelihood
Por: Berenguer-Rico, V, et al.
Publicado em: (2023) -
Least trimmed squares: nuisance parameter free asymptotics
Por: Berenguer Rico, V, et al.
Publicado em: (2025) -
Symmetrically trimmed least squares estimation for Tobit models
Por: Powell, James
Publicado em: (2011) -
Large Sample Behavior of the Least Trimmed Squares Estimator
Por: Yijun Zuo
Publicado em: (2024-11-01) -
Nonlinear Split-Plot Design Model in Parameters Estimation using Estimated Generalized Least Square - Maximum Likelihood Estimation
Por: Ikwuoche John David, et al.
Publicado em: (2018-12-01)