Models where the least trimmed squares and least median of squares estimators are maximum likelihood
The Least Trimmed Squares (LTS) and Least Median of Squares (LMS) estimators are popular robust regression estimators. The idea behind the estimators is to find, for a given h, a sub-sample of h good observations among n observations and estimate the regression on that sub-sample. We find models, ba...
Huvudupphovsmän: | Berenguer-Rico, V, Johansen, S, Nielsen, B |
---|---|
Materialtyp: | Journal article |
Språk: | English |
Publicerad: |
2019
|
Liknande verk
Liknande verk
-
A model where the least trimmed squares estimator is maximum likelihood
av: Berenguer-Rico, V, et al.
Publicerad: (2023) -
Least trimmed squares: nuisance parameter free asymptotics
av: Berenguer Rico, V, et al.
Publicerad: (2025) -
A comparative study on the performance of maximum likelihood, generalized least square, scale-free least square, partial least square and consistent partial least square estimators in structural equation modeling
av: Raudhah Zulkifli, et al.
Publicerad: (2022-01-01) -
Symmetrically trimmed least squares estimation for Tobit models
av: Powell, James
Publicerad: (2011) -
Large Sample Behavior of the Least Trimmed Squares Estimator
av: Yijun Zuo
Publicerad: (2024-11-01)