On the singular sets of solutions to the Kapustin–Witten equations and the Vafa–Witten ones on compact Kähler surfaces
This article finds a structure of singular sets on compact Kähler surfaces, which Taubes introduced in the studies of the asymptotic analysis of solutions to the Kapustin– Witten equations and the Vafa–Witten ones originally on smooth four-manifolds. These equations can be seen as real four-dimensio...
Auteur principal: | Tanaka, Y |
---|---|
Format: | Journal article |
Publié: |
Springer
2018
|
Documents similaires
-
Some boundedness properties of solutions to the Vafa–Witten equations on closed 4-manifolds
par: Tanaka, Y
Publié: (2017) -
Vafa-Witten invariants for projective surfaces II: semistable case
par: Tanaka, Y, et autres
Publié: (2018) -
Vafa-Witten invariants for projective surfaces I: stable case
par: Tanaka, Y, et autres
Publié: (2019) -
A perturbation and generic smoothness of the Vafa-Witten moduli spaces on closed symplectic four-manifolds
par: Tanaka, Y
Publié: (2018) -
Some analytic aspects of Vafa-Witten twisted N̳ = 4 supersymmetric Yang-Millseory theory
par: Mares, Bernard A., Jr. (Bernard Allen)
Publié: (2011)