On the singular sets of solutions to the Kapustin–Witten equations and the Vafa–Witten ones on compact Kähler surfaces
This article finds a structure of singular sets on compact Kähler surfaces, which Taubes introduced in the studies of the asymptotic analysis of solutions to the Kapustin– Witten equations and the Vafa–Witten ones originally on smooth four-manifolds. These equations can be seen as real four-dimensio...
मुख्य लेखक: | Tanaka, Y |
---|---|
स्वरूप: | Journal article |
प्रकाशित: |
Springer
2018
|
समान संसाधन
-
Some boundedness properties of solutions to the Vafa–Witten equations on closed 4-manifolds
द्वारा: Tanaka, Y
प्रकाशित: (2017) -
Vafa-Witten invariants for projective surfaces II: semistable case
द्वारा: Tanaka, Y, और अन्य
प्रकाशित: (2018) -
Vafa-Witten invariants for projective surfaces I: stable case
द्वारा: Tanaka, Y, और अन्य
प्रकाशित: (2019) -
A perturbation and generic smoothness of the Vafa-Witten moduli spaces on closed symplectic four-manifolds
द्वारा: Tanaka, Y
प्रकाशित: (2018) -
Some analytic aspects of Vafa-Witten twisted N̳ = 4 supersymmetric Yang-Millseory theory
द्वारा: Mares, Bernard A., Jr. (Bernard Allen)
प्रकाशित: (2011)