On the singular sets of solutions to the Kapustin–Witten equations and the Vafa–Witten ones on compact Kähler surfaces
This article finds a structure of singular sets on compact Kähler surfaces, which Taubes introduced in the studies of the asymptotic analysis of solutions to the Kapustin– Witten equations and the Vafa–Witten ones originally on smooth four-manifolds. These equations can be seen as real four-dimensio...
第一著者: | Tanaka, Y |
---|---|
フォーマット: | Journal article |
出版事項: |
Springer
2018
|
類似資料
-
Some boundedness properties of solutions to the Vafa–Witten equations on closed 4-manifolds
著者:: Tanaka, Y
出版事項: (2017) -
Vafa-Witten invariants for projective surfaces II: semistable case
著者:: Tanaka, Y, 等
出版事項: (2018) -
Vafa-Witten invariants for projective surfaces I: stable case
著者:: Tanaka, Y, 等
出版事項: (2019) -
A perturbation and generic smoothness of the Vafa-Witten moduli spaces on closed symplectic four-manifolds
著者:: Tanaka, Y
出版事項: (2018) -
Some analytic aspects of Vafa-Witten twisted N̳ = 4 supersymmetric Yang-Millseory theory
著者:: Mares, Bernard A., Jr. (Bernard Allen)
出版事項: (2011)