The largest prime factor of $X^3+2$
The largest prime factor of $X^3+2$ has been investigated by Hooley, who gave a conditional proof that it is infinitely often at least as large as $X^{1+\delta}$, with a certain positive constant $\delta$. It is trivial to obtain such a result with $\delta=0$. One may think of Hooley's result...
Päätekijä: | Heath-Brown, D |
---|---|
Aineistotyyppi: | Journal article |
Julkaistu: |
2001
|
Samankaltaisia teoksia
-
The largest prime factor of X-3+2
Tekijä: Heath-Brown, D
Julkaistu: (2001) -
The largest prime factor of the integers in an interval
Tekijä: Heath-Brown, D
Julkaistu: (1996) -
The largest prime factor of the integers in an interval, II
Tekijä: Heath-Brown, D, et al.
Julkaistu: (1998) -
Primes represented by x(3)+2y(3)
Tekijä: Heath-Brown, D
Julkaistu: (2001) -
Primes represented by $x^3+2y^3$
Tekijä: Heath-Brown, D
Julkaistu: (2001)