The largest prime factor of $X^3+2$
The largest prime factor of $X^3+2$ has been investigated by Hooley, who gave a conditional proof that it is infinitely often at least as large as $X^{1+\delta}$, with a certain positive constant $\delta$. It is trivial to obtain such a result with $\delta=0$. One may think of Hooley's result...
প্রধান লেখক: | Heath-Brown, D |
---|---|
বিন্যাস: | Journal article |
প্রকাশিত: |
2001
|
অনুরূপ উপাদানগুলি
অনুরূপ উপাদানগুলি
-
The largest prime factor of X-3+2
অনুযায়ী: Heath-Brown, D
প্রকাশিত: (2001) -
The largest prime factor of the integers in an interval
অনুযায়ী: Heath-Brown, D
প্রকাশিত: (1996) -
The largest prime factor of the integers in an interval, II
অনুযায়ী: Heath-Brown, D, অন্যান্য
প্রকাশিত: (1998) -
Primes represented by x(3)+2y(3)
অনুযায়ী: Heath-Brown, D
প্রকাশিত: (2001) -
Primes represented by $x^3+2y^3$
অনুযায়ী: Heath-Brown, D
প্রকাশিত: (2001)