The largest prime factor of $X^3+2$
The largest prime factor of $X^3+2$ has been investigated by Hooley, who gave a conditional proof that it is infinitely often at least as large as $X^{1+\delta}$, with a certain positive constant $\delta$. It is trivial to obtain such a result with $\delta=0$. One may think of Hooley's result...
Հիմնական հեղինակ: | Heath-Brown, D |
---|---|
Ձևաչափ: | Journal article |
Հրապարակվել է: |
2001
|
Նմանատիպ նյութեր
-
The largest prime factor of X-3+2
: Heath-Brown, D
Հրապարակվել է: (2001) -
The largest prime factor of the integers in an interval
: Heath-Brown, D
Հրապարակվել է: (1996) -
The largest prime factor of the integers in an interval, II
: Heath-Brown, D, և այլն
Հրապարակվել է: (1998) -
Primes represented by x(3)+2y(3)
: Heath-Brown, D
Հրապարակվել է: (2001) -
Primes represented by $x^3+2y^3$
: Heath-Brown, D
Հրապարակվել է: (2001)