Parameter domains for Turing and stationary flow-distributed waves: I. The influence of nonlinearity

new type of instability in coupled reaction-diffusion-advection systems is analysed in a one-dimensional domain. This instability, arising due to the combined action of flow and diffusion, creates spatially periodic stationary waves termed flow and diffusion-distributed structures (FDS). Here we sho...

Cijeli opis

Bibliografski detalji
Glavni autori: Satnoianu, R, Maini, P, Menzinger, M
Format: Journal article
Izdano: 2001
Opis
Sažetak:new type of instability in coupled reaction-diffusion-advection systems is analysed in a one-dimensional domain. This instability, arising due to the combined action of flow and diffusion, creates spatially periodic stationary waves termed flow and diffusion-distributed structures (FDS). Here we show, via linear stability analysis, that FDS are predicted in a considerably wider domain and are more robust (in the parameter domain) than the classical Turing instability patterns. FDS also represent a natural extension of the recently discovered flow-distributed oscillations (FDO). Nonlinear bifurcation analysis and numerical simulations in one-dimensional spatial domains show that FDS also have much richer solution behaviour than Turing structures. In the framework presented here Turing structures can be viewed as a particular instance of FDS. We conclude that FDS should be more easily obtainable in chemical systems than Turing (and FDO) structures and that they may play a potentially important role in biological pattern formation.