Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces
We study an asymptotic limit of Vlasov type equation with nonlocal interaction forces where the friction terms are dominant. We provide a quantitative estimate of this large friction limit from the kinetic equation to a continuity type equation with a nonlocal velocity field, the so-called aggregati...
Hlavní autoři: | Carrillo de la Plata, JA, Choi, YP |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Elsevier
2020
|
Podobné jednotky
-
Quantifying the hydrodynamic limit of Vlasov-type equations with alignment and nonlocal forces
Autor: Carrillo, JA, a další
Vydáno: (2021) -
Large friction-high force fields limit for the nonlinear Vlasov–Poisson–Fokker–Planck system
Autor: Carrillo, JA, a další
Vydáno: (2021) -
Propagation of chaos for the Vlasov-Poisson-Fokker-Planck equation with a polynomial cut-off
Autor: Carrillo de la Plata, JA, a další
Vydáno: (2018) -
Convergence to equilibrium in Wasserstein distance for damped Euler equations with interaction forces
Autor: Carrillo de la Plata, JA, a další
Vydáno: (2018) -
The collisional particle-in-cell method for the Vlasov–Maxwell–Landau equations
Autor: Bailo, R, a další
Vydáno: (2024)