Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces
We study an asymptotic limit of Vlasov type equation with nonlocal interaction forces where the friction terms are dominant. We provide a quantitative estimate of this large friction limit from the kinetic equation to a continuity type equation with a nonlocal velocity field, the so-called aggregati...
Κύριοι συγγραφείς: | Carrillo de la Plata, JA, Choi, YP |
---|---|
Μορφή: | Journal article |
Γλώσσα: | English |
Έκδοση: |
Elsevier
2020
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Quantifying the hydrodynamic limit of Vlasov-type equations with alignment and nonlocal forces
ανά: Carrillo, JA, κ.ά.
Έκδοση: (2021) -
Large friction-high force fields limit for the nonlinear Vlasov–Poisson–Fokker–Planck system
ανά: Carrillo, JA, κ.ά.
Έκδοση: (2021) -
Propagation of chaos for the Vlasov-Poisson-Fokker-Planck equation with a polynomial cut-off
ανά: Carrillo de la Plata, JA, κ.ά.
Έκδοση: (2018) -
Convergence to equilibrium in Wasserstein distance for damped Euler equations with interaction forces
ανά: Carrillo de la Plata, JA, κ.ά.
Έκδοση: (2018) -
The collisional particle-in-cell method for the Vlasov–Maxwell–Landau equations
ανά: Bailo, R, κ.ά.
Έκδοση: (2024)