Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces
We study an asymptotic limit of Vlasov type equation with nonlocal interaction forces where the friction terms are dominant. We provide a quantitative estimate of this large friction limit from the kinetic equation to a continuity type equation with a nonlocal velocity field, the so-called aggregati...
Egile Nagusiak: | Carrillo de la Plata, JA, Choi, YP |
---|---|
Formatua: | Journal article |
Hizkuntza: | English |
Argitaratua: |
Elsevier
2020
|
Antzeko izenburuak
-
Quantifying the hydrodynamic limit of Vlasov-type equations with alignment and nonlocal forces
nork: Carrillo, JA, et al.
Argitaratua: (2021) -
Large friction-high force fields limit for the nonlinear Vlasov–Poisson–Fokker–Planck system
nork: Carrillo, JA, et al.
Argitaratua: (2021) -
Propagation of chaos for the Vlasov-Poisson-Fokker-Planck equation with a polynomial cut-off
nork: Carrillo de la Plata, JA, et al.
Argitaratua: (2018) -
Convergence to equilibrium in Wasserstein distance for damped Euler equations with interaction forces
nork: Carrillo de la Plata, JA, et al.
Argitaratua: (2018) -
The collisional particle-in-cell method for the Vlasov–Maxwell–Landau equations
nork: Bailo, R, et al.
Argitaratua: (2024)