Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces
We study an asymptotic limit of Vlasov type equation with nonlocal interaction forces where the friction terms are dominant. We provide a quantitative estimate of this large friction limit from the kinetic equation to a continuity type equation with a nonlocal velocity field, the so-called aggregati...
Auteurs principaux: | Carrillo de la Plata, JA, Choi, YP |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Elsevier
2020
|
Documents similaires
-
Quantifying the hydrodynamic limit of Vlasov-type equations with alignment and nonlocal forces
par: Carrillo, JA, et autres
Publié: (2021) -
Large friction-high force fields limit for the nonlinear Vlasov–Poisson–Fokker–Planck system
par: Carrillo, JA, et autres
Publié: (2021) -
Propagation of chaos for the Vlasov-Poisson-Fokker-Planck equation with a polynomial cut-off
par: Carrillo de la Plata, JA, et autres
Publié: (2018) -
Convergence to equilibrium in Wasserstein distance for damped Euler equations with interaction forces
par: Carrillo de la Plata, JA, et autres
Publié: (2018) -
The collisional particle-in-cell method for the Vlasov–Maxwell–Landau equations
par: Bailo, R, et autres
Publié: (2024)