Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces
We study an asymptotic limit of Vlasov type equation with nonlocal interaction forces where the friction terms are dominant. We provide a quantitative estimate of this large friction limit from the kinetic equation to a continuity type equation with a nonlocal velocity field, the so-called aggregati...
Principais autores: | Carrillo de la Plata, JA, Choi, YP |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
Elsevier
2020
|
Registros relacionados
-
Quantifying the hydrodynamic limit of Vlasov-type equations with alignment and nonlocal forces
por: Carrillo, JA, et al.
Publicado em: (2021) -
Large friction-high force fields limit for the nonlinear Vlasov–Poisson–Fokker–Planck system
por: Carrillo, JA, et al.
Publicado em: (2021) -
Propagation of chaos for the Vlasov-Poisson-Fokker-Planck equation with a polynomial cut-off
por: Carrillo de la Plata, JA, et al.
Publicado em: (2018) -
Convergence to equilibrium in Wasserstein distance for damped Euler equations with interaction forces
por: Carrillo de la Plata, JA, et al.
Publicado em: (2018) -
The collisional particle-in-cell method for the Vlasov–Maxwell–Landau equations
por: Bailo, R, et al.
Publicado em: (2024)