Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces
We study an asymptotic limit of Vlasov type equation with nonlocal interaction forces where the friction terms are dominant. We provide a quantitative estimate of this large friction limit from the kinetic equation to a continuity type equation with a nonlocal velocity field, the so-called aggregati...
Những tác giả chính: | Carrillo de la Plata, JA, Choi, YP |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
Elsevier
2020
|
Những quyển sách tương tự
-
Quantifying the hydrodynamic limit of Vlasov-type equations with alignment and nonlocal forces
Bằng: Carrillo, JA, et al.
Được phát hành: (2021) -
Large friction-high force fields limit for the nonlinear Vlasov–Poisson–Fokker–Planck system
Bằng: Carrillo, JA, et al.
Được phát hành: (2021) -
Propagation of chaos for the Vlasov-Poisson-Fokker-Planck equation with a polynomial cut-off
Bằng: Carrillo de la Plata, JA, et al.
Được phát hành: (2018) -
Convergence to equilibrium in Wasserstein distance for damped Euler equations with interaction forces
Bằng: Carrillo de la Plata, JA, et al.
Được phát hành: (2018) -
The collisional particle-in-cell method for the Vlasov–Maxwell–Landau equations
Bằng: Bailo, R, et al.
Được phát hành: (2024)