Skip to content
VuFind
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
Advanced
  • Automated tracking of the tric...
  • Cite this
  • Text this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Permanent link
Automated tracking of the tricuspid valve plane in long-axis cine images with a 2-step deep learning pipeline

Automated tracking of the tricuspid valve plane in long-axis cine images with a 2-step deep learning pipeline

Show other versions (1)
Bibliographic Details
Main Authors: Gonzales, RA, Lamy, J, Peters, DC
Format: Conference item
Language:English
Published: Society for Magnetic Resonance Angiography 2020
  • Holdings
  • Description
  • Other Versions (1)
  • Similar Items
  • Staff View

Similar Items

  • Automated tracking of the tricuspid valve plane in long-axis cine images with a 2-step deep learning pipeline
    by: Gonzales, RA, et al.
    Published: (2021)
  • TVnet: automated time-resolved tracking of the tricuspid valve plane in MRI long-axis cine images with a dual-stage deep learning pipeline
    by: Gonzales, RA, et al.
    Published: (2021)
  • TVnet: automated global analysis of tricuspid valve plane motion in CMR long-axis cines with residual neural networks for assessment of right ventricular function
    by: Gonzales, RA, et al.
    Published: (2022)
  • Time-resolved tracking of the atrioventricular plane displacement in long-axis cine images with residual neural networks
    by: Gonzales, RA, et al.
    Published: (2020)
  • Tricuspid valve flow measurement using a deep learning framework for automated valve‐tracking 2D phase contrast
    by: Lamy, J, et al.
    Published: (2024)

Search Options

  • Search History
  • Advanced Search

Find More

  • Browse the Catalog
  • Browse Alphabetically
  • Explore Channels
  • Course Reserves
  • New Items

Need Help?

  • Search Tips
  • Ask a Librarian
  • FAQs