Predicting battery lifetime under varying usage conditions from early aging data

Accurate battery lifetime prediction is important for maintenance, warranties, and cell design. However, manufacturing variability and usage-dependent degradation make life prediction challenging. Here, we investigate new features derived from capacity-voltage data in early life to predict the lifet...

Full description

Bibliographic Details
Main Authors: Li, T, Zhou, Z, Thelen, A, Howey, DA, Hu, C
Format: Journal article
Language:English
Published: Cell Press 2024
Description
Summary:Accurate battery lifetime prediction is important for maintenance, warranties, and cell design. However, manufacturing variability and usage-dependent degradation make life prediction challenging. Here, we investigate new features derived from capacity-voltage data in early life to predict the lifetime of cells cycled under varying charge rates, discharge rates, and depths of discharge. The early-life features capture a cell’s state of health and the change rate of component-level degradation modes. Using a newly generated dataset from 225 nickel-manganese-cobalt/graphite lithium-ion cells aged under a wide range of conditions, we demonstrate a lifetime prediction of in-distribution cells with 15.1% mean absolute percentage error (MAPE). A hierarchical Bayesian model shows improved performance on extrapolation, achieving 21.8% MAPE for out-of-distribution cells. Our approach highlights the importance of using domain knowledge of battery degradation to inform feature engineering and model construction. Further, a new publicly available battery lifelong aging dataset is provided.