Human aminolevulinate synthase structure reveals a eukaryotic-specific autoinhibitory loop regulating substrate binding and product release

5′-aminolevulinate synthase (ALAS) catalyzes the first step in heme biosynthesis, generating 5′-aminolevulinate from glycine and succinyl-CoA. Inherited frameshift indel mutations of human erythroid-specific isozyme ALAS2, within a C-terminal (Ct) extension of its catalytic core that is only present...

Full description

Bibliographic Details
Main Authors: Bailey, HJ, Arruda Bezerra, G, Marcero, JR, Padhi, S, Foster, WR, Rembeza, E, Roy, A, Bishop, DF, Desnick, RJ, Bulusu, G, Dailey, HA, Yue, WW
Format: Journal article
Language:English
Published: Springer Nature 2020
Description
Summary:5′-aminolevulinate synthase (ALAS) catalyzes the first step in heme biosynthesis, generating 5′-aminolevulinate from glycine and succinyl-CoA. Inherited frameshift indel mutations of human erythroid-specific isozyme ALAS2, within a C-terminal (Ct) extension of its catalytic core that is only present in higher eukaryotes, lead to gain-of-function X-linked protoporphyria (XLP). Here, we report the human ALAS2 crystal structure, revealing that its Ct-extension folds onto the catalytic core, sits atop the active site, and precludes binding of substrate succinyl-CoA. The Ct-extension is therefore an autoinhibitory element that must re-orient during catalysis, as supported by molecular dynamics simulations. Our data explain how Ct deletions in XLP alleviate autoinhibition and increase enzyme activity. Crystallography-based fragment screening reveals a binding hotspot around the Ct-extension, where fragments interfere with the Ct conformational dynamics and inhibit ALAS2 activity. These fragments represent a starting point to develop ALAS2 inhibitors as substrate reduction therapy for porphyria disorders that accumulate toxic heme intermediates.