Spatial control of biological ligands on surfaces applied to T cell activation
In this chapter, we present techniques, based on molecular-scale nanofabrication and selective self-assembly, for the presentation of biomolecules of interest (ligands, receptors, etc.) on a surface with precise spatial control and arbitrary geometry at the single-molecule level. Metallic nanodot ar...
Main Authors: | , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Humana Press
2017
|
_version_ | 1826260563906265088 |
---|---|
author | Cai, H Depoil, D Muller, J Sheetz, M Dustin, M Wind, S |
author_facet | Cai, H Depoil, D Muller, J Sheetz, M Dustin, M Wind, S |
author_sort | Cai, H |
collection | OXFORD |
description | In this chapter, we present techniques, based on molecular-scale nanofabrication and selective self-assembly, for the presentation of biomolecules of interest (ligands, receptors, etc.) on a surface with precise spatial control and arbitrary geometry at the single-molecule level. Metallic nanodot arrays are created on glass coverslips and are then used as anchors for the immobilization of biological ligands via thiol linking chemistry. The nanodot size is controlled by both lithography and metallization. The reagent concentration in self-assembly can be adjusted to ensure single-molecule occupancy for a given dot size. The surrounding glass is backfilled by a protein-repellent layer to prevent nonspecific adsorption. Moreover, bifunctional surfaces are created, whereby a second ligand is presented on the background, which is frequently a requirement for simulating complex cellular functions involving more than one key ligand. This platform serves as a novel and powerful tool for molecular and cellular biology, e.g., to study the fundamental mechanisms of receptor-mediated signaling. |
first_indexed | 2024-03-06T19:07:38Z |
format | Journal article |
id | oxford-uuid:15b35020-9f0a-46d8-bd91-380e08a2c626 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T19:07:38Z |
publishDate | 2017 |
publisher | Humana Press |
record_format | dspace |
spelling | oxford-uuid:15b35020-9f0a-46d8-bd91-380e08a2c6262022-03-26T10:26:56ZSpatial control of biological ligands on surfaces applied to T cell activationJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:15b35020-9f0a-46d8-bd91-380e08a2c626EnglishSymplectic Elements at OxfordHumana Press2017Cai, HDepoil, DMuller, JSheetz, MDustin, MWind, SIn this chapter, we present techniques, based on molecular-scale nanofabrication and selective self-assembly, for the presentation of biomolecules of interest (ligands, receptors, etc.) on a surface with precise spatial control and arbitrary geometry at the single-molecule level. Metallic nanodot arrays are created on glass coverslips and are then used as anchors for the immobilization of biological ligands via thiol linking chemistry. The nanodot size is controlled by both lithography and metallization. The reagent concentration in self-assembly can be adjusted to ensure single-molecule occupancy for a given dot size. The surrounding glass is backfilled by a protein-repellent layer to prevent nonspecific adsorption. Moreover, bifunctional surfaces are created, whereby a second ligand is presented on the background, which is frequently a requirement for simulating complex cellular functions involving more than one key ligand. This platform serves as a novel and powerful tool for molecular and cellular biology, e.g., to study the fundamental mechanisms of receptor-mediated signaling. |
spellingShingle | Cai, H Depoil, D Muller, J Sheetz, M Dustin, M Wind, S Spatial control of biological ligands on surfaces applied to T cell activation |
title | Spatial control of biological ligands on surfaces applied to T cell activation |
title_full | Spatial control of biological ligands on surfaces applied to T cell activation |
title_fullStr | Spatial control of biological ligands on surfaces applied to T cell activation |
title_full_unstemmed | Spatial control of biological ligands on surfaces applied to T cell activation |
title_short | Spatial control of biological ligands on surfaces applied to T cell activation |
title_sort | spatial control of biological ligands on surfaces applied to t cell activation |
work_keys_str_mv | AT caih spatialcontrolofbiologicalligandsonsurfacesappliedtotcellactivation AT depoild spatialcontrolofbiologicalligandsonsurfacesappliedtotcellactivation AT mullerj spatialcontrolofbiologicalligandsonsurfacesappliedtotcellactivation AT sheetzm spatialcontrolofbiologicalligandsonsurfacesappliedtotcellactivation AT dustinm spatialcontrolofbiologicalligandsonsurfacesappliedtotcellactivation AT winds spatialcontrolofbiologicalligandsonsurfacesappliedtotcellactivation |