On-line parameter estimation in general state-space models
The estimation of static parameters in general non-linear non-Gaussian state-space models is a long-standing problem. This is despite the advent of Sequential Monte Carlo (SMC, aka particle filters) methods, which provide very good approximations to the optimal filter under weak assumptions. Several...
Egile Nagusiak: | Andrieu, C, Doucet, A, Tadić, V |
---|---|
Formatua: | Journal article |
Hizkuntza: | English |
Argitaratua: |
2005
|
Antzeko izenburuak
-
On-line parameter estimation in general state-space models using a pseudo-likelihood approach
nork: Andrieu, C, et al.
Argitaratua: (2012) -
Parameter estimation in general state-space models using particle methods
nork: Doucet, A, et al.
Argitaratua: (2003) -
Online Expectation-Maximization type algorithms for parameter estimation in general state space models
nork: Andrieu, C, et al.
Argitaratua: (2003) -
Particle filter as a controlled Markov chain for on-line parameter estimation in general state space models
nork: Poyiadjis, G, et al.
Argitaratua: (2006) -
Exponential forgetting and geometric ergodicity for optimal filtering in general state-space models
nork: Tadic, V, et al.
Argitaratua: (2005)