On-line parameter estimation in general state-space models
The estimation of static parameters in general non-linear non-Gaussian state-space models is a long-standing problem. This is despite the advent of Sequential Monte Carlo (SMC, aka particle filters) methods, which provide very good approximations to the optimal filter under weak assumptions. Several...
Hoofdauteurs: | Andrieu, C, Doucet, A, Tadić, V |
---|---|
Formaat: | Journal article |
Taal: | English |
Gepubliceerd in: |
2005
|
Gelijkaardige items
-
On-line parameter estimation in general state-space models using a pseudo-likelihood approach
door: Andrieu, C, et al.
Gepubliceerd in: (2012) -
Parameter estimation in general state-space models using particle methods
door: Doucet, A, et al.
Gepubliceerd in: (2003) -
Online Expectation-Maximization type algorithms for parameter estimation in general state space models
door: Andrieu, C, et al.
Gepubliceerd in: (2003) -
Particle filter as a controlled Markov chain for on-line parameter estimation in general state space models
door: Poyiadjis, G, et al.
Gepubliceerd in: (2006) -
Exponential forgetting and geometric ergodicity for optimal filtering in general state-space models
door: Tadic, V, et al.
Gepubliceerd in: (2005)