On-line parameter estimation in general state-space models
The estimation of static parameters in general non-linear non-Gaussian state-space models is a long-standing problem. This is despite the advent of Sequential Monte Carlo (SMC, aka particle filters) methods, which provide very good approximations to the optimal filter under weak assumptions. Several...
Главные авторы: | Andrieu, C, Doucet, A, Tadić, V |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
2005
|
Схожие документы
-
On-line parameter estimation in general state-space models using a pseudo-likelihood approach
по: Andrieu, C, и др.
Опубликовано: (2012) -
Parameter estimation in general state-space models using particle methods
по: Doucet, A, и др.
Опубликовано: (2003) -
Online Expectation-Maximization type algorithms for parameter estimation in general state space models
по: Andrieu, C, и др.
Опубликовано: (2003) -
Particle filter as a controlled Markov chain for on-line parameter estimation in general state space models
по: Poyiadjis, G, и др.
Опубликовано: (2006) -
Exponential forgetting and geometric ergodicity for optimal filtering in general state-space models
по: Tadic, V, и др.
Опубликовано: (2005)