On-line parameter estimation in general state-space models
The estimation of static parameters in general non-linear non-Gaussian state-space models is a long-standing problem. This is despite the advent of Sequential Monte Carlo (SMC, aka particle filters) methods, which provide very good approximations to the optimal filter under weak assumptions. Several...
Váldodahkkit: | Andrieu, C, Doucet, A, Tadić, V |
---|---|
Materiálatiipa: | Journal article |
Giella: | English |
Almmustuhtton: |
2005
|
Geahča maid
-
On-line parameter estimation in general state-space models using a pseudo-likelihood approach
Dahkki: Andrieu, C, et al.
Almmustuhtton: (2012) -
Parameter estimation in general state-space models using particle methods
Dahkki: Doucet, A, et al.
Almmustuhtton: (2003) -
Online Expectation-Maximization type algorithms for parameter estimation in general state space models
Dahkki: Andrieu, C, et al.
Almmustuhtton: (2003) -
Particle filter as a controlled Markov chain for on-line parameter estimation in general state space models
Dahkki: Poyiadjis, G, et al.
Almmustuhtton: (2006) -
Exponential forgetting and geometric ergodicity for optimal filtering in general state-space models
Dahkki: Tadic, V, et al.
Almmustuhtton: (2005)