Metrics for sparse graphs
Recently, Bollob\'as, Janson and Riordan introduced a very general family of random graph models, producing inhomogeneous random graphs with $\Theta(n)$ edges. Roughly speaking, there is one model for each {\em kernel}, i.e., each symmetric measurable function from $[0,1]^2$ to the non-negative...
Váldodahkkit: | Bollobas, B, Riordan, O |
---|---|
Materiálatiipa: | Book section |
Almmustuhtton: |
2007
|
Geahča maid
-
Sparse graphs: metrics and random models
Dahkki: Bollobas, B, et al.
Almmustuhtton: (2008) -
Sparse random graphs with clustering
Dahkki: Bollobas, B, et al.
Almmustuhtton: (2008) -
The cut metric, random graphs, and branching processes
Dahkki: Bollobas, B, et al.
Almmustuhtton: (2009) -
Monotone graph limits and quasimonotone graphs
Dahkki: Bollobas, B, et al.
Almmustuhtton: (2011) -
The diameter of sparse random graphs
Dahkki: Riordan, O, et al.
Almmustuhtton: (2008)