Biunitary constructions in quantum information
We present an infinite number of constructions involving unitary error bases, Hadamard matrices, quantum Latin squares and controlled families, many of which have not previously been described. Our results rely on biunitary connections, algebraic objects which play a central role in the theory of pl...
Main Authors: | , |
---|---|
Format: | Conference item |
Published: |
Open Publishing Association
2017
|
Summary: | We present an infinite number of constructions involving unitary error bases, Hadamard matrices, quantum Latin squares and controlled families, many of which have not previously been described. Our results rely on biunitary connections, algebraic objects which play a central role in the theory of planar algebras. They have an attractive graphical calculus which allows simple correctness proofs for the constructions we present. We apply these techniques to construct a unitary error basis that cannot be built using any previously known method. |
---|