Langlands duality for representations and quantum groups at a root of unity

We give a representation-theoretic interpretation of the Langlands character duality of Frenkel and Hernandez, and show that the "Langlands branching multiplicities" for symmetrizable Kac-Moody Lie algebras are equal to certain tensor product multiplicities. For finite type quantum groups,...

Полное описание

Библиографические подробности
Главный автор: McGerty, K
Формат: Journal article
Язык:English
Опубликовано: 2009
Описание
Итог:We give a representation-theoretic interpretation of the Langlands character duality of Frenkel and Hernandez, and show that the "Langlands branching multiplicities" for symmetrizable Kac-Moody Lie algebras are equal to certain tensor product multiplicities. For finite type quantum groups, the connection with tensor products can be explained in terms of tilting modules.